
Vertex models for the hard-square and hard-hexagon gases, and critical parameters from the

scaling transformation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 2781

(http://iopscience.iop.org/0305-4470/13/8/026)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 05:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) 2781-27.94. Printed in Great Britain 

Vertex models for the hard-square and hard-hexagon 
gases, and critical parameters from the scaling 
transformation 

D W Wood and M Goldfinch 
Mathematics Department, University of Nottingham, Nottingham, UK 

Received 18 February 1980, in final form 13 March 1980 

Abstract. In a general formulation of hard-core lattice gas models the hard-square and 
hard-hexagon models are expressed in terms of vertex models. It is shown that the 
hard-square gas is a 16-vertex model on the square lattice, and in one of its representations 
is equivalent to a lattice ramrod model first considered by Nagle. A lattice transformation of 
the hard-hexagon model generates a special case of the 64-vertex model on the triangular 
lattice. In these two reductions clear differences between these two hard-core models 
emerge, and it is probably not surprising that they exhibit quite different critical behaviour. 
It is also shown that the block-site scaling transformation can be used to provide an 
alternative computational scheme for obtaining accurate numerical estimates of critical 
point parameters for these models. The method is illustrated by calculations performed on 
the hard-square gas. 

1. Introduction 

Interest in the critical behaviour of hard-core lattice gas models has recently been 
revived by the work of Baxter and co-workers. Baxter and Tsang (1980) and Baxter et 
a1 (1980) have demonstrated that the corner transfer matrix formalism (Baxter 1978) 
can be applied to two-dimensional hard-core models to yield a very considerable 
extension of the earlier power-series expansions of Gaunt and Fisher (1965), and Gaunt 
(1967). In addition, Baxter (1980) has obtained the exact evaluation of the partition 
function of the two-dimensional gas of hard hexagons. An important outcome of this 
recent work is that the critical point exponents of the hard-square and hard-hexagon 
lattice gas models are quite different. 

Both of these simple one-parameter models model the short-range repulsive forces 
which characterise all interatomic potentials; this is achieved by prohibiting simul- 
taneous occupancy of a small extension of configuration space centred on each atom. 
This feature is present in the equilibrium structure of all atomic liquids, and is often 
thought to be a characteristic of the potential which dominates the nature of the melting 
transition. For a lattice gas this effect is accomplished by excluding any atomic 
configuration containing atoms simultaneously occupying nearest-neighbour lattice 
sites. In this sense the hard-square and hard-hexagon gases are precisely the same 
physical model, but in different lattice spaces, the simple quadratic and triangular 
lattices respectively. The quite different nature of these two phase transitions is 
somewhat worrying in terms of the general aims of this type of model building, which is 
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to unify transition phenomena under strong and common characteristics of interaction 
potentials. One purpose of the present paper is to examine these two models from a 
graph theoretical standpoint to see if the two lattice symmetries invoke differences 
between them. We find that this is indeed the case. The second purpose here is to 
present an alternative scheme for computing all of the critical parameters for such 
models. 

In § 2 several mathematical equivalences between hard-core models and vertex 
models are established. In one such transformation the hard-hexagon gas is shown to 
be equivalent to a gas of hard and bent trimers on the quadratic lattice; however, both 
models can be transformed into types of ramrod models first introduced by Nagle 
(1968), and here clear differences emerge when the two model partition functions are 
considered as graph generating functions. 

The general formulation of hard-core lattice problems which is given here leads 
naturally to the formulation of any such problem in terms of a transfer matrix. This 
makes it possible both to apply and to test the type of scaling transformation introduced 
by Nightingale (1976) as a reliable alternative method for computing any critical 
parameter for these models. The advantage of such an approach to these models could 
well be very considerable when consideration is given to extending the models to 
include additional potential features such as some form of short-range attraction. The 
jump from one to two parameters can severely inhibit the series expansion approach, 
where for example it may well increase the computing requirements by an order of 
magnitude, as for example in the corner transfer matrix method; in the method 
presented here this is much less the case. The use of the scaling transformation is 
presented in § 3, where some calculations are performed on the hard-square gas?. In 
our view these calculations show the scaling transformation to be very successful, and 
the method probably holds much promise for development and future work. 

2. Expansions and vertex models 

Consider any hard-core lattice gas where a simultaneous occupation of nearest- 
neighbour sites is excluded by an infinitely repulsive force, and where in addition the 
interatomic potential is zero for all separations beyond nearest-neighbour (nn) dis- 
tances. For such models the grand partition function 3 will be a function of the activity 
z of an occupied site. A low-density expansion of S(z) can be developed on an 
arbitrary lattice L, (q is the nn coordination number) in terms of the embeddings of all 
the subgraphs G EL,.  Using the site variables ti (i labels the lattice site), where ti = l (0)  
if an atom is present (absent) at a site i, E:(z) can be written in the form 

N 

where the summation is over the 2N atomic configurations, and the first continued 
product extends over all nn pairs of lattice sites. In (1) the factor ( l - t i t j )  acts to 
annihilate atomic configurations in which nn sites i and j are simultaneously occupied. 

t On submission of this paper the authors received a preprint by Racz (1980) on the Ising model 
antiferromagnet in which the scaling transformation calculations for the hard-square lattice gas, shown here 
in columns 2 and 3 of table 1, were obtained. Our own conclusions in relation to critical exponents are in 
agreement with Racz. 
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On expanding the first product in ( 1 )  and summing over all configurations { t } ,  we 
generate the series expansion 

E(z) = (1 +z).( 1 + GEL, 1 (-l)'[G: l : p ] u p ) ,  

where [G: I :  p ]  is the number of embeddings of G which contains 1 edges and p vertices, 
and U = z / ( l  + z ) .  For the hard-square gas (2) generates the 'low 2' expansion of Gaunt 
and Fisher (1965), but these authors formulated their expansion in terms of the direct 
emplacement of atoms on the lattice. The expansion in (2) was in fact generated by 
Gaunt and Fisher (see also Baxter et a1 1980) as an Euler transformation U = z / ( l  + z )  
to improve the convergence and general numerical analysis of their own series. Here 
(1) and (2) make it clear that the variable U has a graph theoretical significance and is a 
natural variable for all hard-core gas models. 

The formulation in ( 1 )  has the advantage of being an algebraic basis for performing 
lattice transformations and for establishing transfer matrices (see 0 3). Thus, for any 
lattice with a two-sublattice structure, we can define za and zb as the activities on 
sublattices a and b, and write 

where an a-site has q nn 6-sites and where and n ( b )  extend over all a -  and 
6-sublattice sites respectively. The sums over each ta variable can be done indepen- 
dently, and (3) becomes 

The atom occupancy variables on the b-sublattice can now be transformed into the hole 
occupancy variables ri = 1 - ti ,  whence 

If we construct a geometrical object out of the vertices bl ,  62, . . . , b, and call it a q-gon, 
then the first product in ( 5 )  is over all such q-gons in L,, each containing one original 
a-site. The product in ( 5 )  can be expanded in the usual way and the sums over {rb} 
performed; here we make use of the fact that r? = ri. Thus a typical term in ( 5 )  relates to 
a graph containing n q-gons as a subgraph in L, with, say, U vertices; this will yield a 
contribution to ( 5 )  of 

[k:n:u]z ,"(1+Zb)N'2-" (6) 

where [ k  : n : U ]  is the number of embeddings of a graph of type k composed of n q-gons. 
Thus 

In the case of the hard-square gas the q-gon is the square of 6-sites surrounding an 
a-site, and the expansion (7) is over all possible configurations of squares on a simple 
quadratic lattice of N / 2  sites. This expansion was obtained by Gaunt and Fisher (1965) 
using a combinatorial argument, and can be used to relate high- and low-density 
expansions of the hard-square gas. 
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The hard-square gas can be formulated as a special case of a 16-vertex model on the 
square net. The construction is very simple and is illustrated in figure 1. In all of what 
follows we shall use the notation shown in figure 2 for the 16-vertex model, where the 
vertex states are denoted by graphs of solid and dotted lines (further references can be 
obtained from Lieb and Wu (1972), and Wood (1975)). Each site of the original lattice 
is located on an edge of the so-called super-lattice (also a square net) represented by the 
broken lines in figure 2. A 1 : 1 equivalence exists between the atomic configurations on 
the original lattice and the vertex configurations on the super-lattice through the 
representation ( t  = 1) (solid line), and ( t  = 0) = (dotted line). Thus the sixteen vertex 
states are generated by the sixteen atomic configurations possible on the squares of the 
original lattice. The hard-core exclusion reduces the non-zero vertex weights to only 
seven; these are 

U1 = 1, O 3 = W 4 = z 9  wg = w10 = U 1 1  = w12 = J,. ( 8 )  

It is clear that the 16-vertex model in (8) generates configurations of rigid linear rods of 
arbitrary lengths in both horizontal and vertical directions, where no two rods can 
intersect ( w z = O ) .  This vertex model is in fact a lattice gas of such rods, and was 
considered by Nagle (1968) in a general discussion of weak graph expansions under the 
title of a ‘lattice ramrod model’. Nagle speculated that such a model might have a phase 
transition similar to the lattice gas of hard squares! 

Figure 1. The vertex configurations of the 16-vertex model. 

1 2 3 5 6 7 8 

9 10 11 12  13 1L 15 16 

Figure 2. Each vertex configuration of the super-lattice (dotted lines) can be defined by the 
16 possible atomic configurations of the four surrounding vertices of the original lattice. 
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It is interesting to consider Fisher's super-exchange model of a lattice gas (Fisher 
1963) in relation to the vertex model (8). The general super-exchange model includes 
nn exclusion on the square lattice, but in addition the atoms can interact over 
next-nearest-neighbour (nnn) distances, but only those formed in alternate squares (the 
white squares on a chess board say). Using the same notation as in ( l ) ,  the partition 
function for this model is in the form 

where (ab) runs over all nn pairs, (aa') and (bb') run over all nnnpairs in 'white' squares, 
and x = exp(-@) where E is the interaction potential at nnn distances. If the white 
squares are chosen to be the squares in figure 1 containing the vertices of the 
super-lattice, then the super-exchange lattice gas can be seen to be the 16-vertex model 
with vertex weights, 

0 1  = 1, 0 3  = 0 4  = xz, wg = 0 1 0  = w11= 0 1 2  = J i ,  (10) 
and contains the monomer dimer problem at x = 0. Fisher showed that (9) can be 
transformed into an Ising model in zero field under the transformation 

exp(4K) = 1 + 42 ( K  = P J )  (11) 
for the special case x = 2, at which point (9) can be written in the form 

Fisher's treatment of the super-exchange model is in terms of a rather complicated spin 
decoration transformation, and involves redundant many-body terms. Here we 
investigate the general vertex model (10) in terms of the theory of Gaaf and Hijmans 
(1975), which is a very compact scheme for investigating the structure of any arbitrary 
16-vertex model. Any such model can be reduced to a standard model which has only 
ten independent parameters, and these have an invariance property which allows all of 
the equivalent forms of a given model to be generated by a group of linear trans- 
formations. In particular, the standard model allowsfor a classification of a given model 
in terms of well known subclasses of the general model. Following this scheme through 
for (lo), the partition function of the original model is expressed first in terms of 16 new 
parameters in the form 

2 = Z(w0, U, U, W )  (13) 
where in the case of (10) the vectors U and U are 

and the matrix W is given by 

In terms of the new parameters U, U and W, all equivalent forms of (10) are generated by 
the set of 3 x 3 orthogonal linear transformations R,  and R,, where 

Z(w0, U, U, W ) = Z ( w o ,  Ri'u, R;'u, RT'WR,). (16) 
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In particular if R$ and Rjo) transform W to the diagonal form W('), and correspond- 
ingly U and U to U(') and ;o (~) ,  then the transformed vertex weights have the 
symmetry given by 
(0) - (0) (0) - (0) 

w5 - 0 6  9 0 1  - u s ,  (0) - (0) = wg, w10 -m16, 

(17) ( 0 )  - (0) (0)  I (0) 
0 1 1  - U 1 3 9  U 1 2  - w 1 4 *  

The condition that the original model is equivalent to a general 8-vertex model is that 
the standard vectors U ( ' )  and U(') lie along one (and the same) of the axes. R?) obtained 
from (15) transforms U and U in (14) to yield 

(18) 

where are the two non-zero eigenvalues of W Thus for (10) to be a general 
8-vertex model, one of the eigenvalues of W must be - 2 ;  the only point at which this is 
possib!e is at x = 2, at which point the model is a free fermion model (Fan and Wu 19701, 
and the critical point is  

u ( o )  - ( 0 )  - 2 1/2 2 1/2 - U  - { ( 2  +A1)/2(2 +4h1) , 0 ,  ( 2  +h2)/2(2 +4h2) } 

zc=(1+JZ)/2. (19) 
All the other cases of (10) are transformed into versions of the 16 vertex model; the 
standard model has the vertex weights 

Finally we note that in the special case of the hard-square gas ( x  = 1) an equivalent 
16-vertex model form of the problem is given by the expansion (2), which is generated 
by the vertex weights 

w1=1+z, wq = 2, 0 3 = W 4 = .  . . = W s = - Z ,  

w g  = wl0 = w l l  = w12 = iz, ~ 1 3  = ~ 1 4  = w15 = U16 = -iz. (25) 

It is interesting to note in passing that the hard-core model (1) on the KagomC lattice 
is simply the monomer dimer problem on the hexagonal lattice. The construction is 
shown in figure 3, where the hexagonal lattice is superimposed onto the KagomC lattice. 
Under the equivalence ( t  = 1(0), KagomC) = (solid (dotted) line, hexagonal), the hard- 
square gas on the KagomC lattice is a special case of the 8-vertex model on the 
hexagonal lattice (Wu 1974), where the non-zero weights are 

This is the monomer dimer problem on the hexagonal lattice, and is known not to have a 
phase transition (Heilmann and Lieb 1972). In this respect the same 'physical' models 
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Y 

Figure 3. The hexagonal lattice superimposed onto the KagomC lattice. The eight possible 
atomic configurations on a triangle define the vertex states of the hexagonal lattice. 

(1) on the KagomC and simple quadratic lattices are radically different; the simple 
quadratic lattice model is known to have a phase transition (Dobrushin 1968). It is 
immediately obvious that the two vertex models (26)  and (8), when viewed as graph 
generating functions on their respective lattices, generate quite different classes of 
graph, and it would appear that the differences in lattice symmetry have undermined the 
original modelling idea, in a way which cannot happen in, say, the Ising model lattice 
gas. 

We now show that a very similar effect appears when we reduce the hard-hexagon 
gas to a vertex model. Consider ( 1 )  on the triangular lattice. We can perform a partial 
trace in the manner of (4) over the sites denoted by an open circle in figure 4. This will in 
effect remove all of the bonds incident at such sites, thus leaving the KagomC lattice 
denoted by the heavy lines in figure 4. On taking the partial trace, we find that the 
partition function can be expressed in the form 

In (27 )  the first product is over all nn pairs in the Kagomk lattice, the second product is 
over all of the hexagonal holes (the decimated sites of the original lattice) of the KagomC 
lattice and the third product runs over the sites of the Kagomi: lattice. The functions f h  

are defined on the site variables of each hexagonal hole (here denoted by t l ,  t2 , .  . . , t6 )  
and are given by 

f h = l + ( l - t l ) ( l - t 2 )  . . , ( l - t b ) Z *  (28) 

Figure 4. The partial trace in (27) is taken over the sites denoted by the open circles, 
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Now we can place a vertex of a new triangular lattice at the centre of each hexagonal 
hole, as illustrated in figure 5 ;  on making the usual equivalence ( t  = 1(0), KagomC) = 
(solid (dotted) line, triangular) the 64 atomic configurations on each hexagonal hole 

Figure 5. The vertex states of the triangular lattice sites are defined by the 64 possible 
atomic configurations on the surrounding hexagons of the KagomC lattice. 

generate the 64 vertex states of the 64-vertex model on the triangular lattice. On 
writing (27) in the form 

E ( Z >  = n Fh, (29) 
{ t }  h 

where, following the scheme of (28), 

9 (30) . . .+f,)/Z 
Fh = (1 - f l t z ) ( l -  f z t 3 )  . . . (1 - f t j t l ) f hZ ( r l+ f  + 

we see that the 64 vertex weights are given by the values of Fh. The gas of hard hexagons 
is then equivalent to the following special case of the 64-vertex model where the 
non-zero weights are 

a l l  one l i n e  
v e r t  i c e s  

4 7  

oil other t w o  l i n e  
v e r t i c e s  where  the 
l i n e s  enc lose  an 
a n g l e  > x / 3  

2 

We can now s e that the vert 

z 

,3 /2  

x model of (31) is no lisation of the 
previous ramrod model (8) to the triangular lattice. It is in fact quite different. The 
partition function of (3 1) will generate closed loops (polygon subgraphs) because of the 
bends which are allowed in the degree-two vertices. The two allowed degree-three 
vertices will also generate classes of graphs which are excluded in (8). Thus, from a 
graph theoretical viewpoint, the 'physical' models (1) on the square net and triangular 
lattices are very different types of graph generating function; this is again the effect of 

z 

ner 
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differences in lattice symmetry, and on this basis alone it might be anticipated that the 
two models would exhibit quite different types of transition. 

A rather intriguing equivalence between the hard-hexagon gas and a 16-vertex 
model on the simple quadratic lattice is illustrated by the construction in figure 6, where 

Figure 6. The square lattice superimposed onto the triangular lattice in such a way that each 
triangular lattice site lies within one square of the simple quadratic lattice. 

a square lattice has been superimposed onto the triangular lattice in such a way that 
every site of the triangular lattice is enclosed by a square of the square net. If a site such 
as ‘a’ in figure 6 is occupied by an atom, the exclusion prohibits the occupancy of sites 
bl ,  b2, . . . , b6. Now if we place the vertex configuration w5 on the square lattice site ‘a’ 
corresponding to ‘a  ’, and repeat this decoration for all such sites which are occupied, we 
recover the vertex configurations of a 16-vertex model where the only non-zero weights 
are 

w - 2  - 1  w,,=I 5- w, = 1 

If in the model (32) a particular vertex is in the configuration os, then there are six 
neighbouring vertices (four nn and two nnn) which cannot be in this same configuration; 
this is in 1 : 1 correspondence with the nn exclusion of the atomic model. We can think 
of the w 5  vertices as representing a triatomic molecule, which is hard in the sense that 
none of the three atoms can be superimposed onto an atom of another molecule. Thus 
the gas of hard hexagons is equivalent to a gas of bent trimers held in a fixed orientation 
on the simple quadratic lattice, and the thermodynamics of this system are of course 
given by Baxter’s recent exact solution (Baxter 1980). In his work on the weak graph 
expansion, Nagle (1968) also speculated that ‘objects’ longer than dimers would 
probably undergo a proper phase transition. 

3. The scaling transformation 

The most accurate calculations of the critical point parameters of the hard-square 
lattice gas are those recently obtained by Baxter et a1 (1980), who developed very long 
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power-series expansions for various thermodynamic functions of the model. Dowson 
(1979) has recently completed a detailed investigation into the scaling transformation 
approach of Nightingale (1976) over a wide range of spin lattice models, in terms of it 
being a serious alternative method of providing accurate numerical estimates of critical 
point parameters. We show here that the scaling transformation can be used to 
determine the critical parameters of hard-core lattice gas models with a high degree of 
accuracy. 

The basis of the method is the simple site-block scaling transformation of Kadanoff 
et al (1967)) which in the thermodynamic limit can be represented in the form 

b d P f ( P )  = g ( P ) + P ‘ f ( P ’ )  (P = l/W (33) 
where f ( p )  and f ( P ’ )  are the appropriate free energies per site and per block respec- 
tively, and b is the spacial rescaling factor. In (33) g ( p )  is the so-called regular part of 
the free energy (for further details see Niemeijer and van Leeuwen (1976)), and p and 
p’ are the site and block inverse temperatures respectively. The corresponding scaling 
relation for the correlation length 5 is 

‘a) = bS(P’); (34) 
thus if p = p’ = p* is a solution of (34), [ ( p ” )  is either 0 or infinity, and p” is either the 
true critical point or a trivial fixed point of the system. The critical exponent of the 
correlation length v is given by 

(@’lap) p = p * .  (35) b’/” = 

The scaling transformation of Nightingale (1976) aims to achieve a sequence of 
approximations of increasing accuracy to both (33) and (34) by using finite lattice 
systems of N and N ’  sites (bdN’ = N )  in which correlation lengths tN and tN, can be 
defined, and where (34) becomes 

[N ( P I  = b&v@’) (36) 
Now if a solution to (36) exists in the form p = p’ = p*, [N and & do not have to be zero 
or infinity. For systems of increasing size, (36) must approach (34) in the ther- 
modynamic limit; hence it may be hoped that sequences p * ( b )  obtained from (36) and 
v(b) from (35) will converge to the true critical values of the model. On the square net 
lattice the finite systems N and N ’  can be chosen to be two strips of N =mL and 
N’ = nL(n < m )  sites. Here the N ’  system represents the block system, and thus 

b = m/n. (37) 
Now if the correlation length for each system is determined in the limit L + 03, (36) takes 
the form 

Sm,oo(P)  = bSn,m(P’)* (38) 
The form of (1) and the various vertex models of 0 2 make it easy to establish a 

transfer matrix for the hard-core lattice gas models. Our purpose here is to test this 
method for the hard square gas, where we consider a hard-square gas on an m X L 
lattice (m even) and define a symmetric transfer matrix T between neighbouring 
columns of m sites. The matrix T is readily obtained from the form of (l), and is given 
by 

m m m 

I = 1  = 1  1-1 
(39) i X ( t , + T , )  T ( t :  7) = n (1 - t J t + ~ )  I-I (1 -T,T,+I) (1 - tZ7t)Z 
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where t and T are the m site variables on neighbouring columns, and cyclic boundary 
conditions are imposed. The dimension of T is less than 2" x 2" because of the 
exclusion contained in (39); thus, for m = 2, T is given by 

and the dimensions of T for strips of even width from 4 to 12 are 7,18,47,123, and 322 
respectively (see table 1). 

Table 1. Estimates of the critical activity z&n, n )  and the critical exponent v ( m ,  n )  
obtained from the solutions to (47) and (48) by using the transfer matrices (39) and those of 
the vertex model (8). The corresponding results for Fisher's super-exchange gas ( x  = 2 in 
(10)) are also shown for comparison and are adapted from the results of Nightingale (1976). 

From T in (39) 

( m , n )  z,(m,n) v ( m : n )  ( m , n )  Mn, n )  v(m,  n )  (m,  n )  zJm, n )  v(m,  n )  

From the vertex model (10) Fisher's super-exchange gas __ 

4,2 4.1011 1,1613 3,2 3,4494 0,9203 493 
6,4 3,8536 1.0585 4,3 3.6576 0.9500 594 
8,6 3.8166 1.0278 5,4 3.7348 0,9740 6 5  

10,8 3.8057 1.0158 6,5 3.7650 0.9858 7,6 
12, 10 3,8013 1,0098 7,6 3,7783 0.9913 8,7 

9,8 
10,9 

Exact 3.7962t 

1.1511 0,9442 
1.1798 0,9644 
1.1930 0.9772 
1.1991 0.9845 
1,2021 0.9888 
1.2038 0.9915 
1,2048 0.9933 

1.2071 1 

t The series result of Baxter et a1 (1980). 

The correlation function ( to t r )  of two sites spacially separated by r lattice units along 
one row of the m x L system can be determined from the eigenvalues and eigenvectors 
of T (see Fisher and Burford 1967). In the limit L + 00 the result is 

i 

where A > A 2  > A J  , . . are the eigenvalues, and cpj are the eigenvectors of T, which for 
(41) to hold must be symmetric, and 

where k indexes the components of the eigenvectors and t o (k )  is the value of to in the 
configuration k (implicit in the ordering of T). The density is simply the first term in 
(41) where 

P = (cpl . tocpl). (43) 
If we carry out this calculation for the 2 x L lattice using (40), we obtain 
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where 
g =[(I  + z ) ~ + ~ z ] " ~ .  

In the limit of maximum packing, we obtain the expected result 

lim ( totr>= (-l)l$+$ 
z- tm 

(45) 

yielding zero correlations for sites on different sublattices. 
The correlation length [m,m of the correlation function defined on the sites of one 

sublattice can be obtained in theusual way (Fisher and Burford 1967; see also Dowson 
(1979)), and now (38) can be established in the form 

m l nEA~(m) l l~~(m) l l=  n 1n[Al(n)llAz(n)ll (m, n even) (47) 
where A 1,2(m), and A 1,2(n) are the largest and next largest (in modulus) eigenvalues of 
the transfer matrices of the m x L and n x L systems respectively. Equation (47) is of 
course established numerically and a solution for z,(m, n )  (the approximation to the 
critical point from (47)) is found by iteration. At z,(m, n )  both tm,m and tn,m are 
numerically differentiated to determine the exponent estimate v(m, n )  given by 

An alternative transfer matrix for the hard-square gas can be formed either by using 
the vertex model (8) or the form (5) for Z(z) (they are equivalent). If we use (9, then 

where the product is over all the squares of the lattice, and r l ,  r2,  r3 and r4 are the hole 
occupation variables at the vertices of a typical square. We can write (49) in the form 

and it is now a simple matterto define a transfer matrix between neighbouring columns 
of an m x L lattice. Both sets of transfer matrices have been used to form estimates of 
the critical activity z,, and the exponent v, which we assume is related to the exponent a 
by the scaling relation dv = 2 -a, where a is the exponent in 

(P, - P )  - (2, - ( 5  1) 

The results of these calculations are shown in table 1, where we have also included a 
sample of Nightingale's results for the Ising model, which are here adapted to show the 
equivalent results for the super-exchange lattice gas at x = 2 in (10). The final result for 
z ,  obtained by Baxter et al, using 24 terms in the expansion of the order parameter, is 

zC= 3*7962* 0*0001. (52) 

The (12, 10) result for zc in table 1 is only 0.1% away from this value. Baxter et a1 
obtained the following result for the exponent a : 

a = 0.09 * 0-05. (53) 

There is good reason to suppose that the approach of the sequences zc(m, m - k) and 
v(m,  m - k) to the true critical values will be monotonic; this is the case in Nightingale's 
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calculations on the Isiag model, which were performed using the analytic form of the 
solutions of Onsager for m x CO strips. If we assume monotonic convergence for both of 
the sequences given in table 1, then we arrive at the conclusion that 

-0.0196 < (Y < 0.0174 (54) 
and this conflicts with the series result (53). It is tempting to conclude that the transition 
is Ising-like with the exact values v = 1 and (Y = 0. 

The method here can of course be used to determine the value of any thermo- 
dynamic function at the critical point. All of the thermodynamic properties of m x CO 

strips can be found from h l ( m )  and its derivatives at zc. As an example, if we use 
zc(lO, 8) in table 1 and hl(lO), we find that the critical density pc and critical pressure 
pPc are 

p,(m = 10) = 0.3681 ( 5 5 )  
and 

pPc(m = 10) = 0.7951. 

The series estimate of Baxter et a1 for pc is 0.368 f 0.001 and the series result of Gaunt 
and Fisher (1965) for the critical pressure is 0.792 f 0.005. 

4. Summary 

We have shown that the hard-square lattice gas can be expressed as a special case of the 
16-vertex model on the square net lattice, one form of which is identical to the lattice 
ramrod model originally considered by Nagle (1968). When a lattice transformation is 
performed on the hard-hexagon gas, a special case of the 64-vertex model on the 
triangular lattice emerges. In a graph theoretical sense, the two lattice symmetries 
invoke significant differences between these two hard-core lattice gas models when 
their respective partition functions are seen as graph generating functions. 

Using the hard-square lattice gas as an example, we have shown how the scaling 
transformation of Nightingale (1976) can be employed as an alternative and accurate 
method of calculating all of the critical point parameters for these models. Our 
attempts to determine the correlation length exponent for atomic correlations on one 
sublattice seem to indicate Ising model values for the critical exponents. 

Acknowledgments 

The authors acknowledge helpful discussions with N Pegg, and one of us (MG) would 
like to thank the SRC for the award of a maintenance grant. 

References 

Baxter R J 1978 J. Statist. Phys. 19 461-78 
- 1980 J. Phys. A: Math. Gen. 13 61-71 
Baxter R J, Enting I G and Tsang S K 1980 J. Statist. Phys. to appear 
Baxter R J and Tsang S K 1980 J., Phys. A: Math. Gen. 13 1023-30 
Dobrushin R L 1968 Funct. Anal. Appl. 2 44 (Engl. trans. 2 302) 



2794 D W Wood and M Goldfinch 

Dowson D R 1979 PhD Thesis Nottingham University 
Fan C and Wu F Y 1970 Phys. Rev. B 2 723-33 
Fisher M E 1963 J. Math. Phys. 2 278-86 
Fisher M E and Burford R J 1967 Phys. Rev. 156 583-622 
Gaaf A and Hijmans J 1975 Physica A 80 149-71 
Gaunt D S 1967 J. Chem. Phys. 46 3237-59 
Gaunt D S and Fisher M E 1965 J. Chem. Phys. 43 2840-63 
Heilmann 0 J and Lieb E H 1972 Commun. Math. Phys. 25 190-231 
Kadanoff L P, Gotze W, Hamblen D, Hecht R, Lewis E AS,  Palciauskas V V, Ray1 M, Swift J, Aspens D and 

Lieb E H and Wu F Y 1972 Phase transitions and Critical Phenomena vol 1 ed C Domb and M S Green 

Nagle J F 1968 J. Math. Phys. 9 1007-19 
Nightingale 1976 Physica 83 A 561-72 
Niemeijer Th and van Leeuwen J M J 1976 Phase Transitions and Critical PointPhenomena vol6 ed C Domb 

Wood D W 1975 Statistical Mechanics vol2 (London: Chem. Soc.) 55-187 
Wu F Y 1974 J. Math. Phys. 15 687-91 

Kane J 1967 Rev. Mod. Phys. 39 395-431 

(London, New York: Academic Press) 

and M S Green 425-505 (London, New York: Academic Press) 


